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We study collaboration networks in terms of evolving, self-organizing bipartite graph models. We propose a
model of a growing network, which combines preferential edge attachment with the bipartite structure, generic
for collaboration networks. The model depends exclusively on basic properties of the network, such as the total
number of collaborators and acts of collaboration, the mean size of collaborations, etc. The simplest model
defined within this framework already allows us to describe many of the main topological characteristics
(degree distribution, clustering coefficient, ¢tf one-mode projections of several real collaboration networks,
without parameter fitting. We explain the observed dependence of the local clustering on degree and the
degree—degree correlations in terms of the “aging” of collaborators and their physical impossibility to partici-
pate in an unlimited number of collaborations.
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I. INTRODUCTION of the boards of company directors related by sitting on the

] ) same board, etc. Collaboration networks can be represented
Recent years have witnessed an upsurge in the study gf pipartite graphgl0] with two types of vertices, one kind

complex systems that can be described in terms of networksepresenting the actors, while vertices of the other kind are
in which the vertices picture the elementary units composingcts of collaboration. As a rule, however, it is the one-mode
the system, and the edges represent the interactions or relgrjections of these bipartite graphs that are empirically
tions between pairs of unifd,2]. These studies have led 1o gy,gied. In these projections, the vertices representing the
the development of a modern theory of complex networkycts of collaboration are excluded, and collaborating pairs of
which has found fruitful applications in fields as diverse asyciors are connected by edges. Since multiple connections in
the Interne{3], the World Wide Wel{4], or biological inter- e projected graph are usually ignored, the projection is less
acting networkg5-8]. o informative than the original bipartite graph.

An important example of this kind of system, that has  The study of several examples of large collaboration net-
attracted a great deal of interest from researchers in differegt ks [11-15 allows one to draw a number of conclusions

scientific fields, is sociail_ network_[s9]. The study of soci_al regarding the main topological properties of one-mode pro-
networks has been traditionally hindered by the small size Ojfections of these networks.

the networks considered and the difficulties in the process of (1) The degree distributioR(k), defined as the probabil-
data collection(usually from questionnaires or interviews ity that a vertex is connected toother vertices, often exhib-

More recently, however, the increasing availability of 1argejis 4 fat tail that can be approximated by a power law behav-
digital databases has allowed one to study a particular clasgg; ¢or large k.

of social networks, the so-calledollaboration networks (2) The clustering coefficient, roughly defined as the

These networks can be defined in a nonambiguous way, ang,papility that two neighbors of any given vertex are also

their exceptionally large size has permitted empirical ré+,qjgnpors of each other, takes in average large values, and it

searchers to obtain a reliable statistical description of the'focally depends on the vertex degree, signaling the presence

topological properties and to arrive at solid conclusions cong¢ 4 Structure in the networkl6,17. ’

cerning their structure. , _ (3) The degrees of the nearest-neighbor vertices are posi-
Social collaboration networks are generally defined ingye|y correlated, i.e., vertices with large degree have a high

terms of a set of peoplcalledactorsin the social science . onapiity to be connected to vertices with large degree, and

literaturg and a set ofcollaboration acts Actors relate t0 e versa, This property has been dubhegortative mixing
each other by the fact of having participated in a commo 18.

coIIabc.)ration.act. Examples of this kind. of network can b.e The general presence of these three properties in most
found in movie actors related by costarring the same movie,qaboration graphs prompts toward the development of

scientists related by coauthoring a scientific paper, membeig o e|s capable of reproducing and explaining these features.

In general, the first insight into the architecture of a complex
network is provided by “formal” constructions of random
*Electronic address: jjramasc@fc.up.pt graphs. These constructions allow one to reproduce the struc-
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ture of complex networks, but completely ignore the mechaproperties of collaboration networks:—bipartite graphs and
nisms underlying these architectures. The minimal formatheir one-mode projections. Section Il presents the existing
model of a complex one-partite graph, that is a graph comempirical data on collaboration networks, referring in par-
posed by a single type of vertices, is the configuration modeficular to the networks of movie actors, scientific coauthor-
[19-23. In simple terms, the configuration model generatesship, and company directors. In Sec. IV we introduce a
(uncorrelateyl graphs, which are maximally random under simple model of a growing, self-organizing bipartite graph.
the constraint that their degree distribution is a given onegection V contains results obtained for this model and a de-

Similarly, the minimal model of a complex bipartite graph is (5jjed comparison with empirical data. Separately, in Sec. VI

a bipartite network that is maximally random under the cony,e giscuss and explain the presence of positive correlations
straint that the two degree distributions for both kinds of

. ) o ; between the degrees of the nearest-neighbor vertices in col-
vertices are giveri23,24. One can see that this is a direct 9 g

generalization of the configuration model to bipartite graphsltggggag?r:hgefw f? rls<sc a:’? I.tr?]l.? af.iﬁtlg? V(\elft edls(;::srseége_ r:nl%(l)_r_

The quality of the configuration model applied to bipartite laboration net\[/)vo)r/kls Finlalll i:1 Sec VV” vi/(e dr?’;\w thel main

graphs was checked in R¢23]. In this work, it was proved ; : Y :

that the empirical degree distribution of the one-mode pro_conclusmns of our work.

jection of a bipartite collaboration graph agrees with that of

the configuration model when the empirically observed dey; sTRUCTURAL ORGANIZATION OF COLLABORATION

gree distributions are imposed on the two kinds of vertices. NETWORKS

One should emphasize that a one-mode projection of an un-

correlated bipartite graph is correlated. In particular, this pro- - Ag we have already mentioned in the Introduction, col-

jectjon contair_1$ numerous triangles of edges which results ifyporation networks can be represented as bipartite graphs

a high clustering25). o _ [28]. On one side, we have collaboration agésg., movie
Therefore, it might seem at first sight that, in order 0, qia1ing or paper coauthorship, belonging to the same com-

explain the nature of the structure of collaboration networkspany school, etgthat may be represented as a special kind
it is sufficient (i) to propose a mechanism generating the ' L

specific degree distributions of the two kinds of vertices anos fer\t/i?:refls)cﬁétoanreﬂ}ﬁ]ggetroStlﬁg <\;\(l)ellahbaovr:1titcr;r? :(St(smﬁrrcv?:ich
afterwardq(ii) to connect vertices by using the configuration - : T
model. This approach, however, fails to reproduce the comt-hey participate. TWO mdependent_ degree d|_str|but|ons may
plex distribution of connections over collaboration networks,\Nen e defined: First, the probabil@n) of havingn actors
since it assumes pure randomness. Also, it does not explaRfrticipating in any collaboration act; and second, the prob-
specific distributions of vertex degrees, which, in the con-2bility Q(q) that any actor has taken part gncollaboration
figuration model, are assumed to be given. Note that, whil@cts.
providing reasonable values of clustering, the configuration In most of cases, however, the object of study is not the
model fails to reproduce the type of degree—degree correlavhole bipartite graph but its one-mode projection: i.e., the
tions in collaboration networks. Consequently, in order tonetwork formed by the collaborating actors linked to each
fully explain the specific architecture of collaboration net- other whenever they have shared a collaboration act. For this
works (fat-tailed degree distributions, high clustering, assor-projected network, another degree distribut®tk) may be
tative mixing, etc), we have to introduce a mechanism for considered, defined as the probability that any given actor is
the linking of vertices in these networks. . connected t& others. Focusing on the one-mode projection
In the present paper we propose a first approximation 1@ 5 collaboration network, many other properties generally
such a mechanism. In our approach, we treat collaboratiogy,gied in common random graphs can be measured. This
networks as growing, self-organizing, correlated bipartitey e of study has already been carried out for several empiri-
graphs, applying the ideas at the basis of the preferent|qj/a| social networkgsee Ref[29] for a recent review The
attachment concept put forward by Barabasi and AI8}  aniities that we use to describe the structure of the pro-
in the network modeling contexsee also Refl27]) t0 bi-  jacted network are the clustering coefficient and the mean
partite graphs. The simplest model that we can define alreadyjstering[12], the average clustering coefficient of vertices
allows us to quant|tat|vely descr_lbe most of the emplr!calof degreek [30—33, the average degree of the nearest neigh-
data on collaboration networks without fitting, only by using jyors of the vertices of degrde[34], and the Pearson corre-
basic numbers characterizing the real networks. We emphasiion coefficient defined in Ref$18,35.
size that the absence of fitting convincingly proves the valid-  The |ocal clustering;; of the vertexi is given by the rate

ity of the concept. . between the number of triangles connected to that vestex,

_ The degree—degree correlations in the one-mode projegyg the total number of possible triangles includingkitk;
tions of collaboration graphs are a topic of our special inter-_ 172, ie.

est. We show that the “assortative mixing” character of these
correlations is not so inevitable in collaboration networks, as

it is usually believed25]. We explain the origin of the as- C= Z_Si_ (1)
sortative mixing in real collaboration networks in terms of ki(ki — 1)

the aging of actors, which cannot accept new connections

during the whole growth process of the network. To obtain the mean degree-dependent local clustering we av-

The present paper is organized as follows. In Sec. Il weerage the local clustering over all vertices with degtée a
review measurements defined to characterize the topologicaktwork,
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The quantitiesc(k), {(c), and c provide information on the 10°F U F b 3 o .
concentration of loops of length three in a graph, which is i 10_5? L A" %0 |
typically high in social network$36]. Note that if the local 10 10' 10° %
clustering depends on the degrees (c), and the(relative L e H——
difference is great in many real-world networks. b 10 10 q 10 10

The correlations between the degrees of connected verti-

ces can be fully defined by means of the joint probability FiG. 1. (a) Probability distribution of the size of collaboration
P(k,k"), defined such tha2-d/)P(K,k’) is the probability  actsS(n) for the movie actor collaboration netwogtnain ploy and
that a randomly chosen edge connects to vertices of dégreethe scientific collaboration networlinsed. (b) Probability distribu-
andk’ [37]. (& is the Kronecker symbol.By using this  tion that an actor has taken partdrcollaboration act€(q) for the
quantity one can compute the average degree of the nearesbvie actor collaboration networimain plo) and the scientific

neighbors of the vertices of degriek,(k), defined as collaboration networKinsey. The solid line has slope-2.
E k'P(k,k") I1l. EMPIRICAL DATA ON COLLABORATION
k=0~ =S KPK), (5 ETHORES
= = "P(k’[K), 5
" kP(k) K In the present section we revisit the empirical analysis of

three typical social collaboration networks. We consider in
whereP(k’ | k) is the conventional probability that a vertex of particular the network formed by movie actors playing in the
degreek is connected to a vertex of degr&€ In simple  same movie, the network of scientific collaborations, and the
terms, if the network presents assortative mix{tayge de- network of company board directors sitting on the same
gree vertices connect preferably with large degree verticedhoard.
and vice versp k,,(k) increases wittk [38]. In the case of
disassortative mixinglarge degree vertices connected with
low degree vertices, and vice veys&,,(k) is conversely a
decreasing function df. Analogous information can be ob-  The movie actor collaboration network that we consider
tained by means of the Pearson correlation coefficient, dewas obtained from the Internet Movie Databa$klDB )

A. Movie actor collaboration network

fined as [39]. Taking only into account movies with more than one
actor, and discarding duplicated actors in several movies, we
> kzinn(k)P(k) - (k3?2 finally analyze the properties of a network composed\by
k =382 219 actors acting arr118 477 films. The distribution
r=«k (K(K3) — (K22 : ®)  of movie cast sizeS(n), is represented in Fig.(4). Appar-

ently, this function follows an exponential decay, with an
Here positive(negative values ofr imply the presence of average cast size of=12.33 actors per movie. The distribu-
assortativgdisassortativemixing. tion Q(q) [number of movies in which an actor has played
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FIG. 2. Degree distributio(k) of the one-mode projection for FIG. 4. Average degree of the nearest neighbors as a function of
the movie actor collaboration netwogkain ploy and the scientific ~ the degreek, (k) for the movie actor collaboration netwotknain
collaboration networkinsey. The full line has slope=2. plot) and the scientific collaboration netwogisey.
adjusts better to a power law dec@(q) ~q " with an ap- =0.23. In Table | we summarize the main average values

parent exponeny= 2, see Fig. (b). An upper cutoff of this  obtained for this network.
dependence is observed aroumd- 100. The mean number
of movies played per actor ig))=3.82. B. Scientific collaboration networks

The degree_distributiqn 01_‘ the one-mode projection of this The next collaboration network that we analyze is the
network, P(k), is plotted in Fig. 2. It has a power law decay penyork of scientific collaborations collected from the con-
with approximately the same exponent @&y), which ex-  gensed matter preprint database at Los Alafd@. In this
tends for close to two decades up to a sharp cutofk.at cojjaboration graph, the actors represent scientists which
~2000. The mean degree of the networkl=78.69 The  have collaborated in the writing of a scientific paper. The
local clustering as a function of degree is depicted in Fig. 3complete bipartite network is composed t3y17 828 papers
We can observe a flat region, extending up to degree valuegnd N=16 258 authors. The distribution of the number of
close to 18, followed by a rapid decrease. The mean clus-guthors in a given paper is plotted in Figal This distribu-
tering of the one-mode projection {s)=0.78 and the clus- tion is clearly exponential, with an average vale3.05.
tering coefficient i£=0.17. The correlations in the projected The distribution of the number of papers written by any
network, presented in the form of the average degree of thgiven author, Fig. (b), shows, on the other hand, an apparent
nearest neighbors of a vertex versus its degree, are plotted gower law behavior, even though the limited range that it
Fig. 4. The increasing behavior of the functik(k) is com-  takes(scarcely more than one decageecludes the determi-
patible with the presence of assortative mixing, a fact that igiation of a significant exponent. The average number of pa-
further confirmed by the value of the Pearson coefficient, Pers written by any author is in this ca&®=3.35.

The degree distribution of the one-mode projection of the

0 scientific collaboration network, plotted in Fig. 2, shows

10 E again a fat-tailed behavior, compatible with a power law. The
] corresponding average degree (i§=5.85. The degree-
10k - dependent local clusterirgfk) and the average degree of the
e ] nearest neighbors are explored in Figs. 3 and 4, respectively.
% This last result, together with a Pearser0.31, indicates the
gm.z_ i presence of a strong assortative mixing. Additional numeri-
o E cal parameters characterizing this network are summarized in
Fo'E Table I.
10°F E . .
E o C. Board of directorships
[0 ] The last collaboration network that we report is the net-
1ot el il sl work of company directors, in which two directors are linked
10 10 11(() 10 10 if they sit on the same board of directors. Table | reports the

data corresponding to the list of the “Fortune 1000” US com-
FIG. 3. Local clustering as a function of the degn¢e) for the ~ panies, obtained from Reff29,34. It includest=914 com-
movie actor collaboration networkmain ploy and the scientific  panies andN=7673 directors. The average number of direc-
collaboration networkinsey. tors per company i:i=11.5. Both distributionsQ(q) and
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TABLE I. Comparison of calculations with empirical data for the movie, scientific collaboration, and codirectorship networks and the
simulations of the model.

Movie actors Analytic Numeric  Numeric  Coauthors Analytic Numeric Numeric  Directors Analytic Numeric

network results results  with aging  network results results  with aging network  results results
t 118477 18 10° 17828 18 10° 914 16
N 382219 16258 7673
n 12.33 12.33 12.33 12.33 3.05 3.05 3.05 3.05 11.5 115 115
m 3.23 3.23 3.23 0.91 0.91 0.91 8.39 8.39
Oe ~10? 107 ~15 15 ~10
(a) 3.82 3.82 4.44 4.39 3.35 3.35 3.70 3.69 1.37 1.48
(k 78.69 43.25 75.05 85.67 5.85 6.87 8.45 8.93 14.44 14.39 17.10
vy 2.35 2.43 4.70
(c) 0.78 0.71 0.76 0.70 0.64 0.68 0.50 0.43 0.88 0.87 0.86
c 0.17 0.08 0.037 0.08 0.36 0.08 0.026 0.09 0.59 0.5 0.32
r 0.23 -0.13 0.14 0.31 -0.08 0.40 0.28 0.11

*The cutoffk,~ 10° was used.
®The cutoffk,~ 107 was used.

P(k) can be adjusted by exponential decaying functions, alrandomly selects a previous movie and then chooses at ran-

though the range of values fgrandk is quite restricted. The dom one of its actors.

mean degree of the projected network(ig=14.44. The

clustering coefficient of the one-mode projected network is

quite large, and it shows a clear assortative mixing behavior, One can see that the evolution rules of the present model

as given by a Pearson correlation coefficienD.28. practically coincide with those of the Simon mod2¥]. For
simplicity, let us assume that the number of actors playing in
each movie is constant and equal to its average valae,

B. Analytical results

IV. SELE-ORGANIZED COLLABORATION MODEL as well as the number of new actors per mowiesm. This
o assumption is in fact quite reasonable given the exponential
A. Definition of the model nature of theS(n) distributions observed empirically. We also

fAssume that if the total number of actors is large, the prob-

To understand the common properties of collaboratio bility that ¢ ¢ lected f ie h read
networks, we propose a self-organized growing model. wp!iity that two actors sefected for a new movie have aiready
costarred in other old film is vanishingly small. Note that,

exploit two generic features of collaboration networks: ) ) X o .
b g o trictly speaking, this assumption is only valid for uncorre-

Social collaboration networks are organized as bipartit ated networks with rapidly decreasing degree distributions
raphs.(ii) Social collaboration networks are not static enti- . S ) :
graphs(il) Nevertheless, the results obtained with it provide a good

ties, but they grow in time by the continuous addition of new o ..
acts of collaborationmovies produced or papers writden gno.ugh approximation to the empirical valsee Table)ito
{gstlfy its introduction.

and new actors, that increase the pool of possible participan y . . . . .
P P P P Within this approximation, since each movie starred by an

in new acts of collaboration. T

Using the language of movies to make the descriptionaCto.r leads 1o the acquisition Df_l. new coactors, we have
more concrete, our growing bipartite network model is de-2 strict relation between the experience of an acfoand the
fined by the following rules: total number of its coactor§ts degree in the projected net-

(1) At each time step a new movie withactors is added. work), k:

(2) Of then actors playing in a new moviey actors are k=qn-1). (7)
new, without previous experience. i ,

(3) The restn—m actors are chosen from the pool of In particular, at largek and g, when we can consider both

“old” actors with a probability proportional to the numbgr ~ Variables to be continuous, we have

of movies that they previously starred. 1 k

The total number of movies s the “time.” The numben P(k) = ﬂQ(ﬂ) (8)
may be either constant or a random variable distributed with
a given distributionS(n). The numbem may also be either In the limit of largeN, the total number of edges in the

constant or a random variable. At each time step, the totabne-mode projected gragthe number of pairwise coactor-
number of actors increases 8s—N+m. Thus the model shipg ist times the number of pairs of actors in a new film,
generates a bipartite graph bimovie vertices andN actor  that is, tn(n—1)/2, while the total number of actors N
vertices. Note that the proportional preference corresponds tetm. Thus the mean degree of the one-mode projection net-
the following practical rule of selection of actors: A director work is
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n(n-1) angles attached to a vertex of degieeAs we have seen
Ky =——. (9)  before, this number ig(n-1)(n-2)/2, or, in terms ofk,
s(k)=k(n-2)/2. Therefore
Therefore
T >, P(@ag(n-1)(n-2)/2
= =—. 10 c=
WEE1TH 10 >, P@a(n-la(n- 1) - 1]/2
As in the Simon model, the connections of this growing (n-2){q)
bipartite graph self-organize into a scale-free structure. Quite = (n-1)(e® - (q)
similarly to standard derivations for the Simon model, in the
large network limit, the distribution takes the forfi®,27] _ (n=2)(k) (18
=
Q) = (v~ 1B(@, ), (11 K=
whereB(,) is the B-function [42] and _ _One can see that the aver:_ige_ clu_ste(b)_g:onverges tp a
o finite value for any degree distribution, since the region of
-0y m (12 low degrees makes the main contribution. Consequently, Eq.
Y= n-m ) (17) works well even if the degree distribution is fat-tailed.
_ _ The clustering coefficient, on the other hand, approaches
For g> 1, the asymptotics oQ(q) is zero if the second moment of the degree distribution di-
QQ) ~ (q+y-1/2, (13) verges. This divergence takes place 6 3 in the thermo-

dynamic limit(N,t— ). In this case¢ crucially depends on
so thaty is the exponent of the degree distribution. In thethe degree cutofk. (or q.) in the formcwk;@—w_ Note that

one-mode projection, this corresponds to formula (18) may underestimate the value of the clustering
P(K) ~[k+ (y-1/2(M- D] (14) coefficient whenever the degree distribution is fat-tailed and
' k. is large.

That is, the projected degree distribution exhibits a power
law behavior, with an offseky=(y—1/2)(n-1). The pres-
ence of this offset, which may be large for large values,of V. RESULTS AND COMPARISON WITH REAL
can hinder the direct evaluation of the expongnTherefore NETWORKS
it is more appropriate to compare the degree distribution with
the general expression E@d.4).

To calculate the clustering coefficient, we need to recal
our second assumption: If we consider a particular actor,

To check the validity of our model, we proceed to com-
pare the empirical data on collaboration networks with the
predictions made in the previous section, as well as with
who has plaved ina movies. in the thermodynamic limit numerical simulations of the model. The analytic predictions
played Irg ' ne thermodyna ._are specified in terms of two parameters, the average number
none of his coactors repeats twice in different films. This . =
. . . of actors per collaboration actand the average number of
means that in the projected network the triangles attached to — i
. . . new actorsm. If all these actors are recruited at a constant
a vertexi can only relate his coactors inside each separate ; iy
. . . rate, then we have in average=N/t new actors per collabo-
movie. The number of such triangles ggn-1)(n-2)/2, . .
. . . L ration act. From these two parameters, using the results of
while the total number of possible triangles attached i®

- : - N the previous section, we can compute our predictions for all
k(k 1)./2 or, equwalgntlyq(ﬁ 1)[q(ﬁ 1)-1]/2. The Iogal the properties of the networks described in Sec. Ill. When
clustering as a function of the experience of an actor is the

Berforming numerical simulations of the model, and in order

given by to avoid discreteness, we use randomly distributeandn.
n-2 Their distributions are taken to be exponential with averages
c(q) = q-1D-1’ (15  mandn, respectively. This functional form corresponds to
q that of the distributionS(n) empirically observed for actor
which, as a function ok, transforms into and scientific collaboration networksee Fig. 1a)]. For the
oo company directorship network on the other hand, we do not
c(k)=——. (16) count with an empirical form ofS(n). Hence we checked
k-1 both exponential and Poisson distributions. The global char-
Then using the definitiori6) readily yields the average allcteris.tics of the networ@ generated with this last distribu-
clustering tion su¢ better their emplnqa}l counterparts. The resultg of the
Pl T2 0@ cor(?parls?n between empirical 3ata, tgleoretlcal predictions,
n- q and simulations are summarized in Table I.
©= glP(k)c(k) =(n- aglk— 1 n- 1q2>0q -1Un-1) We observe an agreement between the model predictions

and the empirical results for the mean cluster{og Note
(17) some deviations in the mean degrée of one-mode pro-

On the other hand, to compute the clustering coefficignt jected networks. These discrepancies are due to the fact that
defined in Eq.(4), we need to estimate the number of tri- in our analysis we neglect the probability that some actors
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FIG. 5. Comparison among the degree distributRiR) for the FIG. 6. Comparison among the clustering coefficient as a func-

empirical movie actor collaboration netwogkircles, for the theo-  tion of the degree(k) for the empirical movie actor collaboration

retical prediction of Sec. I\(dot-dashed ling and for simulations  network(circles, for the simulations of the original version of the

of the original model(dashed curveand the version with aging model(dashed ling and for the model with agingsolid line). The

(solid line). main plot is for the actor costarring network and the inset for the
scientific collaboration network.

for a new film have previously costarred in the same movies.

For the net of codirectorships, the computed clustering coeftribution, generated by the simplest version of our model,
ficient ¢ is in a reasonable agreement with the empiricalshow disassortative mixing. On the contrary, in the case of
value. In the other networks, however, the calculated valuegirectorship networks, the model provides positive values for
of ¢ are severely underestimated. The reason for this is thghe Pearson coefficient, in agreement with the empirical
poor quality of the approximate formu(d8) for this model  results, though a little lowefsee discussion in the next sec-
in the case of a fat-tailed degree distributi@ee discussion tion).
in Sec. V).

The exponents of the projected degree distributionjare
=2.35,y=2.43, andy=4.7 for the movie, coauthorship, and VI. SELE-ORGANIZED MODEL WITH AGING
codirectorship networks, respectively. The exponent larger ) )
than 3 in this last case is compatible with the exponential At least in one aspect, the model presented above is a
decay observed empirically. The range of the empirical deS€rous overs_lmpllflcanon _of the mechanism underlying the
gree distribution in the coauthorship network is too small todrowth of social collaboration networks. It allows an analyti-
compare with the asymptotic expression Et4). So, we cal treatment but leads to problems in the comparison with
make this comparison only in the case of the movie actors
network, Fig. 5. As can be seen, the agreement between the 1§ e e g
theoretical and empirical distributions is notorious. Only at 3 E
very small and very large values of the degree a certain dis-
crepancy can be noticed essentially due to the continuous
degree approximation employed and the presence of a cutoff
in the empirical distribution, respectively. This upper cutoff
is inevitable due to two factorsi) an actor physically cannot N
have an infinite number of costars, afiid finite size effects 2
restrict the degrees of verticésee, e.g., Refl41]).

The empirical local clustering and its analog obtained by

nn

[ o ]
]01§_ 104 AA \'g E

numerical simulationgFig. 6) demonstrate a more complex F Wk g ]
dependence on degree than the simple estimate of16y. 10k S R ——— i
From Fig. 6 we see that the functiafk) computed from the 2 T R
model follows a slower decay than the corresponding empiri- 10’ 10" 10° 10’ 10°
cal function for the movie actors network. The results for the k

mean degree of the nearest neighbors of a vertex as a func-

tion of its degreekny,(k), are re_presented In Fig. 7. Unexpect- neighbors as a function of the degieg(k) for the empirical movie
Edly’ apart from a small region for very small valueskof actor collaboration networfcircles, the simulations of the original
knn(K) decreases with degree, and the Pearson correlation cersion of the mode{dashed ling and for the model with aging
efficient is negativesee Table)l So that, unlike real-world  (solid line). The main plot is for the actor costarring network and
collaboration graphs, networks with a fat-tailed degree disthe inset for the scientific collaboration network.

FIG. 7. Comparison among the average degree of the nearest
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the clustering coefficient and, especially, degree—degree cor- 10’ Ty
relations of empirical networks. The most important missing [
point is probably the aging of individual agents. This issue is
evident in the case of the movie actor netwgakthough it
can be observed for the scientific collaboration network.too
The Internet Movie Database site, from which the actor col-
laboration network was extracted, contains information span-
ning the whole century of the history of cinema, from Louis
Lumiere to the most recent Hollywood productions. Consid-
ering that actors have a finite professional lifetime, it is un-
realistic to allow them to take part in a movie irrespective of 107
their age. i o
If we take into account this fact, two main consequences A ;
are immediately expected. On the one side, there should be /2 S e E—
an upper cutoff in th&(q) distribution corresponding to the 0 %
professional life expectation of actors, as actually it is found

in empirical distributions, and, in addition, not all actors may g g. Average degree of the nearest neighbors as a function of

work together: only those who are contemporaneous. Obvi- - .
ously, this phenomenon affects much less the Codirectorshithe degreek,,(k) for an uncorrelated bipartite graph with the same

network because of its exponential degree distribution. - . AU

To introduce this new ingredient in the model, we mustmOdeI(SOI'd. I_|ne). For comparison, the same quantity is displayed
. . S for the empirical actor networkcircles.
first assume an aging rate for individual agents. The most
straightforward way to do so is to suppose that the time is .
directly equivalent to the experienae Actually, in more ©f Qo andrwere chosen only to properly describe the degree
realistic situations, it may happen that each agent has its ows§stribution in the range of large degrees. _
aging rhythm. However, the latter version of aging would In Fig. 6, the local clu_stenng is plotted as afunc.tllon of the
make the model more complex. Once time is identified, wedegree for a network with aging and for the empirical actor
must consider a survival probability distribution for agents.network. The dependence(k) adjusts better to empirical
In parallel with biological systems, we will assume an almostdata, and the computed clustering coefficients are closer to
sure survival until a certain ag@, and an exponential decay the empirical onegsee Table ). The improvement on these
hereafter. The modification of the model then requires twg-oefficients is understandable. As one can see from our
new parameters: the Cutdﬁo and the characteristic time of Slmple_ analytlcal eStlr-nat-lons-, the d_ll’ect |r_1tr0duct|0n of the
the exponential decay. The rest of the model remains the cutoff in the degree distribution seriously improves the val-
same. That is, in each step a new movie is produced, ues of the clustering coefficients.
actors are new and the rest of themm are chosen at ran- A far more important point is that the aging changes the
dom with a probability proportional to their experience. Intype of degree—degree correlations. In the version of the
addition, we assume that the actors become inactive, i.emodel with aging, the computed dependence of the mean
they cannot be chosen again for new movies, with a probdegree of the nearest neighbor of a vertex on its degree prop-
ability given by the complementary of the survival distribu- erly describes the empirical dependence, as may be seen in
tion for their particular age. Fig. 7. As a result, the computed values of the Pearson cor-

We carried out simulations with the new version of the relation coefficients turns out to be positifessortative mix-
model.Q, was fixed at 100 for the actors network and at 15ing) and close enough to the empirical valusse Table )l
for scientific collaborations to agree with the cutoff observedOne should note that in the framework of the configuration
in the empirical distributiongQ(q) of these networks. The Mmodel of an uncorrelated bipartite network, this agreement is
value of the other parameter, is not so easy to establish impossible. We have checked this claim in the folloyvmg.
from phenomenological data, therefore we check severdd@y: We have measured the degree—degree correlations in
characteristic times. For the sake of concreteness, let us fé?€ one-mode projection resulting from an uncorrelated bi-
cus on the results obtained with=50 for actor costarring Partite graph with the same degree distributions for both
and with =7 for scientific coauthorships, which are realistic tYPes of vertices as generated by our model. In contrast to the
values compatible with the final decay of t@¢q) empirical ~ self-organized model, see Fig. 8, the cukygk) turns out to
distributions. Actually, using- two times bigger we did not be nearly flat, the Pearson coefficient being close to zero.
observe essential differences in the properties of the neffhis signals that the degree—degree correlations are practi-
works. Moreover, a simple exponential survival probability cally absent in this case.
(i.e., with the only parameter) also provides similar ap-
proximate_ yalues of the clgstering coefficient and the .Pear— VIl. CONCLUSION
son coefficient. However, it does not allow one to satisfac-
tory describe the whole degree distribution. Note that our In summary, we have studied a minimal model of evolv-
choice of the aging paramete@;, and = does not actually ing, self-organizing collaboration networks. This model is
mean fitting of our final results, which are the clustering andnot based on a static perspective as was the configuration
degree—degree correlation characteristics. Indeed, the valus®del, but on a dynamical mechanism to construct the net-

knn(k)

gegree distributions for both types of vertices as generated by our
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work. Besides, its basic constituents are preferential attachmode projections. However, the specific degree—degree cor-
ment and the bipartite structure of social networks. Our rerelations in these projections are quite weak. In other words,
sults show that the self-organized model offers a goodhe configuration model graphs with degree distributions
starting point to explain existing empirical data. The modeltypical for movie actor nets show neither assortative nor dis-
was compared with empirical results for a number of realassortative mixingthey haver =0). In contrast, our self-
networks, namely a network of scientific coauthorships, arganized model provides correlated bipartite graphs, which,
network of movie actor collaborations, and a network of,nder natural assumptions, have one-mode projections with

company codirectorships. o realistic structure and realistic correlations.
We have shown that, apart of a generic bipartite structure

and the growth factor, one more element has to be taken into
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