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We study collaboration networks in terms of evolving, self-organizing bipartite graph models. We propose a
model of a growing network, which combines preferential edge attachment with the bipartite structure, generic
for collaboration networks. The model depends exclusively on basic properties of the network, such as the total
number of collaborators and acts of collaboration, the mean size of collaborations, etc. The simplest model
defined within this framework already allows us to describe many of the main topological characteristics
(degree distribution, clustering coefficient, etc.) of one-mode projections of several real collaboration networks,
without parameter fitting. We explain the observed dependence of the local clustering on degree and the
degree–degree correlations in terms of the “aging” of collaborators and their physical impossibility to partici-
pate in an unlimited number of collaborations.
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I. INTRODUCTION

Recent years have witnessed an upsurge in the study of
complex systems that can be described in terms of networks,
in which the vertices picture the elementary units composing
the system, and the edges represent the interactions or rela-
tions between pairs of units[1,2]. These studies have led to
the development of a modern theory of complex networks
which has found fruitful applications in fields as diverse as
the Internet[3], the World Wide Web[4], or biological inter-
acting networks[5–8].

An important example of this kind of system, that has
attracted a great deal of interest from researchers in different
scientific fields, is social networks[9]. The study of social
networks has been traditionally hindered by the small size of
the networks considered and the difficulties in the process of
data collection(usually from questionnaires or interviews).
More recently, however, the increasing availability of large
digital databases has allowed one to study a particular class
of social networks, the so-calledcollaboration networks.
These networks can be defined in a nonambiguous way, and
their exceptionally large size has permitted empirical re-
searchers to obtain a reliable statistical description of their
topological properties and to arrive at solid conclusions con-
cerning their structure.

Social collaboration networks are generally defined in
terms of a set of people(calledactors in the social science
literature) and a set ofcollaboration acts. Actors relate to
each other by the fact of having participated in a common
collaboration act. Examples of this kind of network can be
found in movie actors related by costarring the same movie,
scientists related by coauthoring a scientific paper, members

of the boards of company directors related by sitting on the
same board, etc. Collaboration networks can be represented
as bipartite graphs[10] with two types of vertices, one kind
representing the actors, while vertices of the other kind are
acts of collaboration. As a rule, however, it is the one-mode
projections of these bipartite graphs that are empirically
studied. In these projections, the vertices representing the
acts of collaboration are excluded, and collaborating pairs of
actors are connected by edges. Since multiple connections in
the projected graph are usually ignored, the projection is less
informative than the original bipartite graph.

The study of several examples of large collaboration net-
works [11–15] allows one to draw a number of conclusions
regarding the main topological properties of one-mode pro-
jections of these networks.

(1) The degree distributionPskd, defined as the probabil-
ity that a vertex is connected tok other vertices, often exhib-
its a fat tail that can be approximated by a power law behav-
ior for largek.

(2) The clustering coefficient, roughly defined as the
probability that two neighbors of any given vertex are also
neighbors of each other, takes in average large values, and it
locally depends on the vertex degree, signaling the presence
of a structure in the network[16,17].

(3) The degrees of the nearest-neighbor vertices are posi-
tively correlated, i.e., vertices with large degree have a high
probability to be connected to vertices with large degree, and
vice versa. This property has been dubbedassortative mixing
[18].

The general presence of these three properties in most
collaboration graphs prompts toward the development of
models capable of reproducing and explaining these features.
In general, the first insight into the architecture of a complex
network is provided by “formal” constructions of random
graphs. These constructions allow one to reproduce the struc-*Electronic address: jjramasc@fc.up.pt

PHYSICAL REVIEW E 70, 036106(2004)

1539-3755/2004/70(3)/036106(10)/$22.50 ©2004 The American Physical Society70 036106-1



ture of complex networks, but completely ignore the mecha-
nisms underlying these architectures. The minimal formal
model of a complex one-partite graph, that is a graph com-
posed by a single type of vertices, is the configuration model
[19–22]. In simple terms, the configuration model generates
(uncorrelated) graphs, which are maximally random under
the constraint that their degree distribution is a given one.
Similarly, the minimal model of a complex bipartite graph is
a bipartite network that is maximally random under the con-
straint that the two degree distributions for both kinds of
vertices are given[23,24]. One can see that this is a direct
generalization of the configuration model to bipartite graphs.
The quality of the configuration model applied to bipartite
graphs was checked in Ref.[23]. In this work, it was proved
that the empirical degree distribution of the one-mode pro-
jection of a bipartite collaboration graph agrees with that of
the configuration model when the empirically observed de-
gree distributions are imposed on the two kinds of vertices.
One should emphasize that a one-mode projection of an un-
correlated bipartite graph is correlated. In particular, this pro-
jection contains numerous triangles of edges which results in
a high clustering[25].

Therefore, it might seem at first sight that, in order to
explain the nature of the structure of collaboration networks,
it is sufficient (i) to propose a mechanism generating the
specific degree distributions of the two kinds of vertices and
afterwards(ii ) to connect vertices by using the configuration
model. This approach, however, fails to reproduce the com-
plex distribution of connections over collaboration networks,
since it assumes pure randomness. Also, it does not explain
specific distributions of vertex degrees, which, in the con-
figuration model, are assumed to be given. Note that, while
providing reasonable values of clustering, the configuration
model fails to reproduce the type of degree–degree correla-
tions in collaboration networks. Consequently, in order to
fully explain the specific architecture of collaboration net-
works (fat-tailed degree distributions, high clustering, assor-
tative mixing, etc.), we have to introduce a mechanism for
the linking of vertices in these networks.

In the present paper we propose a first approximation to
such a mechanism. In our approach, we treat collaboration
networks as growing, self-organizing, correlated bipartite
graphs, applying the ideas at the basis of the preferential
attachment concept put forward by Barabási and Albert[26]
in the network modeling context(see also Ref.[27]) to bi-
partite graphs. The simplest model that we can define already
allows us to quantitatively describe most of the empirical
data on collaboration networks without fitting, only by using
basic numbers characterizing the real networks. We empha-
size that the absence of fitting convincingly proves the valid-
ity of the concept.

The degree–degree correlations in the one-mode projec-
tions of collaboration graphs are a topic of our special inter-
est. We show that the “assortative mixing” character of these
correlations is not so inevitable in collaboration networks, as
it is usually believed[25]. We explain the origin of the as-
sortative mixing in real collaboration networks in terms of
the aging of actors, which cannot accept new connections
during the whole growth process of the network.

The present paper is organized as follows. In Sec. II we
review measurements defined to characterize the topological

properties of collaboration networks:—bipartite graphs and
their one-mode projections. Section III presents the existing
empirical data on collaboration networks, referring in par-
ticular to the networks of movie actors, scientific coauthor-
ship, and company directors. In Sec. IV we introduce a
simple model of a growing, self-organizing bipartite graph.
Section V contains results obtained for this model and a de-
tailed comparison with empirical data. Separately, in Sec. VI
we discuss and explain the presence of positive correlations
between the degrees of the nearest-neighbor vertices in col-
laboration networks. In this section we discuss the impor-
tance of the “physical” limitation of vertex degrees in col-
laboration networks. Finally, in Sec. VII we draw the main
conclusions of our work.

II. STRUCTURAL ORGANIZATION OF COLLABORATION
NETWORKS

As we have already mentioned in the Introduction, col-
laboration networks can be represented as bipartite graphs
[28]. On one side, we have collaboration acts(e.g., movie
costarring or paper coauthorship, belonging to the same com-
pany, school, etc.) that may be represented as a special kind
of vertices. On the other side we have the actors(normal
vertices) that are linked to the collaboration acts in which
they participate. Two independent degree distributions may
then be defined: First, the probabilitySsnd of havingn actors
participating in any collaboration act; and second, the prob-
ability Qsqd that any actor has taken part inq collaboration
acts.

In most of cases, however, the object of study is not the
whole bipartite graph but its one-mode projection: i.e., the
network formed by the collaborating actors linked to each
other whenever they have shared a collaboration act. For this
projected network, another degree distributionPskd may be
considered, defined as the probability that any given actor is
connected tok others. Focusing on the one-mode projection
of a collaboration network, many other properties generally
studied in common random graphs can be measured. This
type of study has already been carried out for several empiri-
cal social networks(see Ref.[29] for a recent review). The
quantities that we use to describe the structure of the pro-
jected network are the clustering coefficient and the mean
clustering[12], the average clustering coefficient of vertices
of degreek [30–33], the average degree of the nearest neigh-
bors of the vertices of degreek [34], and the Pearson corre-
lation coefficient defined in Refs.[18,35].

The local clusteringci of the vertexi is given by the rate
between the number of triangles connected to that vertex,si,
and the total number of possible triangles including it,kiski

−1d /2, i.e.,

ci =
2si

kiski − 1d
. s1d

To obtain the mean degree-dependent local clustering we av-
erage the local clustering over all vertices with degreek in a
network,
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cskd =
sskd

ksk − 1d/2
, s2d

wheresskd=ksiskdl is the mean number of connections be-
tween the nearest neighbors of a vertex of degreek. The
mean clusteringkcl is defined as the average of the local
clustering over all the vertices in a network, i.e.,

kcl = o
k.1

Pskdcskd =
1

No
i

ci , s3d

where N is the total number of actors(vertices), and the
second sum runs over theN vertices of the network. The
clustering coefficient of a graph(transitivity in sociology[9])
is defined as

c =
3 3 snumber of triangles of edges in a graphd

snumber of connected triples of verticesd

=

2o
k

Pskdsskd

o
k

Pskdksk − 1d
. s4d

The quantitiescskd, kcl, and c provide information on the
concentration of loops of length three in a graph, which is
typically high in social networks[36]. Note that if the local
clustering depends on the degree,cÞ kcl, and the(relative)
difference is great in many real-world networks.

The correlations between the degrees of connected verti-
ces can be fully defined by means of the joint probability
Psk,k8d, defined such thats2−dk,k8dPsk,k8d is the probability
that a randomly chosen edge connects to vertices of degreek
and k8 [37]. (dk,k8 is the Kronecker symbol.) By using this
quantity one can compute the average degree of the nearest

neighbors of the vertices of degreek, k̄nnskd, defined as

k̄nnskd = kkl

o
k8

k8Psk,k8d

kPskd
; o

k8

k8Psk8ukd, s5d

wherePsk8 ukd is the conventional probability that a vertex of
degreek is connected to a vertex of degreek8. In simple
terms, if the network presents assortative mixing(large de-
gree vertices connect preferably with large degree vertices,

and vice versa), k̄nnskd increases withk [38]. In the case of
disassortative mixing(large degree vertices connected with
low degree vertices, and vice versa), k̄nnskd is conversely a
decreasing function ofk. Analogous information can be ob-
tained by means of the Pearson correlation coefficient, de-
fined as

r = kkl
o

k

k2k̄nnskdPskd − kk2l2

kklkk3l − kk2l2 . s6d

Here positive(negative) values ofr imply the presence of
assortative(disassortative) mixing.

III. EMPIRICAL DATA ON COLLABORATION
NETWORKS

In the present section we revisit the empirical analysis of
three typical social collaboration networks. We consider in
particular the network formed by movie actors playing in the
same movie, the network of scientific collaborations, and the
network of company board directors sitting on the same
board.

A. Movie actor collaboration network

The movie actor collaboration network that we consider
was obtained from the Internet Movie Database(IMDB )
[39]. Taking only into account movies with more than one
actor, and discarding duplicated actors in several movies, we
finally analyze the properties of a network composed byN
=382 219 actors acting ont=118 477 films. The distribution
of movie cast size,Ssnd, is represented in Fig. 1(a). Appar-
ently, this function follows an exponential decay, with an
average cast size ofn̄=12.33 actors per movie. The distribu-
tion Qsqd [number of movies in which an actor has played]

FIG. 1. (a) Probability distribution of the size of collaboration
actsSsnd for the movie actor collaboration network(main plot) and
the scientific collaboration network(inset). (b) Probability distribu-
tion that an actor has taken part inq collaboration actsQsqd for the
movie actor collaboration network(main plot) and the scientific
collaboration network(inset). The solid line has slope.2.
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adjusts better to a power law decayQsqd,q−g with an ap-
parent exponentg<2, see Fig. 1(b). An upper cutoff of this
dependence is observed aroundqc,100. The mean number
of movies played per actor iskql=3.82.

The degree distribution of the one-mode projection of this
network,Pskd, is plotted in Fig. 2. It has a power law decay
with approximately the same exponent asQsqd, which ex-
tends for close to two decades up to a sharp cutoff atkc
,2000. The mean degree of the network iskkl=78.69 The
local clustering as a function of degree is depicted in Fig. 3.
We can observe a flat region, extending up to degree values
close to 102, followed by a rapid decrease. The mean clus-
tering of the one-mode projection iskcl=0.78 and the clus-
tering coefficient isc=0.17. The correlations in the projected
network, presented in the form of the average degree of the
nearest neighbors of a vertex versus its degree, are plotted in

Fig. 4. The increasing behavior of the functionk̄nnskd is com-
patible with the presence of assortative mixing, a fact that is
further confirmed by the value of the Pearson coefficient,r

=0.23. In Table I we summarize the main average values
obtained for this network.

B. Scientific collaboration networks

The next collaboration network that we analyze is the
network of scientific collaborations collected from the con-
densed matter preprint database at Los Alamos[40]. In this
collaboration graph, the actors represent scientists which
have collaborated in the writing of a scientific paper. The
complete bipartite network is composed byt=17 828 papers
and N=16 258 authors. The distribution of the number of
authors in a given paper is plotted in Fig. 1(a). This distribu-
tion is clearly exponential, with an average valuen̄=3.05.
The distribution of the number of papers written by any
given author, Fig. 1(b), shows, on the other hand, an apparent
power law behavior, even though the limited range that it
takes(scarcely more than one decade) precludes the determi-
nation of a significant exponent. The average number of pa-
pers written by any author is in this casekql=3.35.

The degree distribution of the one-mode projection of the
scientific collaboration network, plotted in Fig. 2, shows
again a fat-tailed behavior, compatible with a power law. The
corresponding average degree iskkl=5.85. The degree-
dependent local clusteringcskd and the average degree of the
nearest neighbors are explored in Figs. 3 and 4, respectively.
This last result, together with a Pearsonr =0.31, indicates the
presence of a strong assortative mixing. Additional numeri-
cal parameters characterizing this network are summarized in
Table I.

C. Board of directorships

The last collaboration network that we report is the net-
work of company directors, in which two directors are linked
if they sit on the same board of directors. Table I reports the
data corresponding to the list of the “Fortune 1000” US com-
panies, obtained from Refs.[29,36]. It includest=914 com-
panies andN=7673 directors. The average number of direc-
tors per company isn̄=11.5. Both distributionsQsqd and

FIG. 2. Degree distributionPskd of the one-mode projection for
the movie actor collaboration network(main plot) and the scientific
collaboration network(inset). The full line has slope.2.

FIG. 3. Local clustering as a function of the degreecskd for the
movie actor collaboration network(main plot) and the scientific
collaboration network(inset).

FIG. 4. Average degree of the nearest neighbors as a function of

the degreek̄nnskd for the movie actor collaboration network(main
plot) and the scientific collaboration network(inset).
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Pskd can be adjusted by exponential decaying functions, al-
though the range of values forq andk is quite restricted. The
mean degree of the projected network iskkl=14.44. The
clustering coefficient of the one-mode projected network is
quite large, and it shows a clear assortative mixing behavior,
as given by a Pearson correlation coefficientr =0.28.

IV. SELF-ORGANIZED COLLABORATION MODEL

A. Definition of the model

To understand the common properties of collaboration
networks, we propose a self-organized growing model. We
exploit two generic features of collaboration networks:(i)
Social collaboration networks are organized as bipartite
graphs.(ii ) Social collaboration networks are not static enti-
ties, but they grow in time by the continuous addition of new
acts of collaboration(movies produced or papers written),
and new actors, that increase the pool of possible participants
in new acts of collaboration.

Using the language of movies to make the description
more concrete, our growing bipartite network model is de-
fined by the following rules:

(1) At each time step a new movie withn actors is added.
(2) Of the n actors playing in a new movie,m actors are

new, without previous experience.
(3) The restn−m actors are chosen from the pool of

“old” actors with a probability proportional to the numberq
of movies that they previously starred.

The total number of movies ist, the “time.” The numbern
may be either constant or a random variable distributed with
a given distributionSsnd. The numberm may also be either
constant or a random variable. At each time step, the total
number of actors increases asN→N+m. Thus the model
generates a bipartite graph oft movie vertices andN actor
vertices. Note that the proportional preference corresponds to
the following practical rule of selection of actors: A director

randomly selects a previous movie and then chooses at ran-
dom one of its actors.

B. Analytical results

One can see that the evolution rules of the present model
practically coincide with those of the Simon model[27]. For
simplicity, let us assume that the number of actors playing in
each movie is constant and equal to its average value,n= n̄,
as well as the number of new actors per movie,m=m̄. This
assumption is in fact quite reasonable given the exponential
nature of theSsnd distributions observed empirically. We also
assume that if the total number of actors is large, the prob-
ability that two actors selected for a new movie have already
costarred in other old film is vanishingly small. Note that,
strictly speaking, this assumption is only valid for uncorre-
lated networks with rapidly decreasing degree distributions.
Nevertheless, the results obtained with it provide a good
enough approximation to the empirical values(see Table I) to
justify its introduction.

Within this approximation, since each movie starred by an
actor leads to the acquisition ofn̄−1 new coactors, we have
a strict relation between the experience of an actor,q, and the
total number of its coactors(its degree in the projected net-
work), k:

k = qsn̄ − 1d. s7d

In particular, at largek and q, when we can consider both
variables to be continuous, we have

Pskd >
1

n̄ − 1
QS k

n̄ − 1
D . s8d

In the limit of largeN, the total number of edges in the
one-mode projected graph(the number of pairwise coactor-
ships) is t times the number of pairs of actors in a new film,
that is, tn̄sn̄−1d /2, while the total number of actors isN
= tm̄. Thus the mean degree of the one-mode projection net-
work is

TABLE I. Comparison of calculations with empirical data for the movie, scientific collaboration, and codirectorship networks and the
simulations of the model.

Movie actors Analytic Numeric Numeric Coauthors Analytic Numeric Numeric Directors Analytic Numeric

network results results with aging network results results with aging network results results

t 118477 105 105 17828 105 105 914 105

N 382219 16258 7673

n̄ 12.33 12.33 12.33 12.33 3.05 3.05 3.05 3.05 11.5 11.5 11.5

m̄ 3.23 3.23 3.23 0.91 0.91 0.91 8.39 8.39

qc ,102 102 ,15 15 ,10

kql 3.82 3.82 4.44 4.39 3.35 3.35 3.70 3.69 1.37 1.48

kkl 78.69 43.25 75.05 85.67 5.85 6.87 8.45 8.93 14.44 14.39 17.10

g 2.35 2.43 4.70

kcl 0.78 0.71 0.76 0.70 0.64 0.68 0.50 0.43 0.88 0.87 0.86

c 0.17 0.06a 0.037 0.08 0.36 0.08b 0.026 0.09 0.59 0.5 0.32

r 0.23 −0.13 0.14 0.31 −0.08 0.40 0.28 0.11

aThe cutoffkc,103 was used.
bThe cutoffkc,102 was used.
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kkl =
n̄sn̄ − 1d

m̄
. s9d

Therefore

kql =
kkl

n̄ − 1
=

n̄

m̄
. s10d

As in the Simon model, the connections of this growing
bipartite graph self-organize into a scale-free structure. Quite
similarly to standard derivations for the Simon model, in the
large network limit, the distribution takes the form[2,27]

Qsqd = sg − 1dBsq,gd, s11d

whereBs,d is theb-function [42] and

g = 2 +
m̄

n̄ − m̄
. s12d

For q@1, the asymptotics ofQsqd is

Qsqd , sq + g − 1/2d−g, s13d

so thatg is the exponent of the degree distribution. In the
one-mode projection, this corresponds to

Pskd , fk + sg − 1/2dsn̄ − 1dg−g. s14d

That is, the projected degree distribution exhibits a power
law behavior, with an offsetk0=sg−1/2dsn̄−1d. The pres-
ence of this offset, which may be large for large values ofn̄,
can hinder the direct evaluation of the exponentg. Therefore
it is more appropriate to compare the degree distribution with
the general expression Eq.(14).

To calculate the clustering coefficient, we need to recall
our second assumption: If we consider a particular actor,i,
who has played inq movies, in the thermodynamic limit
none of his coactors repeats twice in different films. This
means that in the projected network the triangles attached to
a vertexi can only relate his coactors inside each separate
movie. The number of such triangles isqsn̄−1dsn̄−2d /2,
while the total number of possible triangles attached toi is
ksk−1d /2 or, equivalently,qsn̄−1dfqsn̄−1d−1g /2. The local
clustering as a function of the experience of an actor is then
given by

csqd =
n̄ − 2

qsn̄ − 1d − 1
, s15d

which, as a function ofk, transforms into

cskd =
n̄ − 2

k − 1
. s16d

Then using the definition(6) readily yields the average
clustering

kcl = o
k.1

Pskdcskd = sn̄ − 2do
k.1

Pskd
k − 1

=
n̄ − 2

n̄ − 1
o
q.0

Qsqd
q − 1/sn̄ − 1d

.

s17d

On the other hand, to compute the clustering coefficientc,
defined in Eq.(4), we need to estimate the number of tri-

angles attached to a vertex of degreek. As we have seen
before, this number isqsn̄−1dsn̄−2d /2, or, in terms ofk,
sskd=ksn̄−2d /2. Therefore

c =
oq

Psqdqsn − 1dsn − 2d/2

oq
Psqdqsn − 1dfqsn − 1d − 1g/2

=
sn − 2dkql

sn − 1dkq2l − kql

=
sn − 2dkkl
kk2l − kkl

. s18d

One can see that the average clusteringkcl converges to a
finite value for any degree distribution, since the region of
low degrees makes the main contribution. Consequently, Eq.
(17) works well even if the degree distribution is fat-tailed.
The clustering coefficient, on the other hand, approaches
zero if the second moment of the degree distribution di-
verges. This divergence takes place forgø3 in the thermo-
dynamic limit sN,t→`d. In this case,c crucially depends on
the degree cutoffkc (or qc) in the formc,kc

−s3−gd. Note that
formula (18) may underestimate the value of the clustering
coefficient whenever the degree distribution is fat-tailed and
kc is large.

V. RESULTS AND COMPARISON WITH REAL
NETWORKS

To check the validity of our model, we proceed to com-
pare the empirical data on collaboration networks with the
predictions made in the previous section, as well as with
numerical simulations of the model. The analytic predictions
are specified in terms of two parameters, the average number
of actors per collaboration actn̄ and the average number of
new actorsm̄. If all these actors are recruited at a constant
rate, then we have in averagem̄=N/ t new actors per collabo-
ration act. From these two parameters, using the results of
the previous section, we can compute our predictions for all
the properties of the networks described in Sec. III. When
performing numerical simulations of the model, and in order
to avoid discreteness, we use randomly distributedm andn.
Their distributions are taken to be exponential with averages
m̄ and n̄, respectively. This functional form corresponds to
that of the distributionSsnd empirically observed for actor
and scientific collaboration networks[see Fig. 1(a)]. For the
company directorship network on the other hand, we do not
count with an empirical form ofSsnd. Hence we checked
both exponential and Poisson distributions. The global char-
acteristics of the networks generated with this last distribu-
tion suit better their empirical counterparts. The results of the
comparison between empirical data, theoretical predictions,
and simulations are summarized in Table I.

We observe an agreement between the model predictions
and the empirical results for the mean clusteringkcl. Note
some deviations in the mean degreekkl of one-mode pro-
jected networks. These discrepancies are due to the fact that
in our analysis we neglect the probability that some actors
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for a new film have previously costarred in the same movies.
For the net of codirectorships, the computed clustering coef-
ficient c is in a reasonable agreement with the empirical
value. In the other networks, however, the calculated values
of c are severely underestimated. The reason for this is the
poor quality of the approximate formula(18) for this model
in the case of a fat-tailed degree distribution(see discussion
in Sec. IV).

The exponents of the projected degree distribution areg
=2.35,g=2.43, andg=4.7 for the movie, coauthorship, and
codirectorship networks, respectively. The exponent larger
than 3 in this last case is compatible with the exponential
decay observed empirically. The range of the empirical de-
gree distribution in the coauthorship network is too small to
compare with the asymptotic expression Eq.(14). So, we
make this comparison only in the case of the movie actors
network, Fig. 5. As can be seen, the agreement between the
theoretical and empirical distributions is notorious. Only at
very small and very large values of the degree a certain dis-
crepancy can be noticed essentially due to the continuous
degree approximation employed and the presence of a cutoff
in the empirical distribution, respectively. This upper cutoff
is inevitable due to two factors:(i) an actor physically cannot
have an infinite number of costars, and(ii ) finite size effects
restrict the degrees of vertices(see, e.g., Ref.[41]).

The empirical local clustering and its analog obtained by
numerical simulations(Fig. 6) demonstrate a more complex
dependence on degree than the simple estimate of Eq.(16).
From Fig. 6 we see that the functioncskd computed from the
model follows a slower decay than the corresponding empiri-
cal function for the movie actors network. The results for the
mean degree of the nearest neighbors of a vertex as a func-

tion of its degree,k̄nnskd, are represented in Fig. 7. Unexpect-
edly, apart from a small region for very small values ofk,

k̄nnskd decreases with degree, and the Pearson correlation co-
efficient is negative(see Table I). So that, unlike real-world
collaboration graphs, networks with a fat-tailed degree dis-

tribution, generated by the simplest version of our model,
show disassortative mixing. On the contrary, in the case of
directorship networks, the model provides positive values for
the Pearson coefficientr, in agreement with the empirical
results, though a little lower(see discussion in the next sec-
tion).

VI. SELF-ORGANIZED MODEL WITH AGING

At least in one aspect, the model presented above is a
serious oversimplification of the mechanism underlying the
growth of social collaboration networks. It allows an analyti-
cal treatment but leads to problems in the comparison with

FIG. 5. Comparison among the degree distributionPskd for the
empirical movie actor collaboration network(circles), for the theo-
retical prediction of Sec. IV(dot-dashed line), and for simulations
of the original model(dashed curve) and the version with aging
(solid line).

FIG. 6. Comparison among the clustering coefficient as a func-
tion of the degreecskd for the empirical movie actor collaboration
network (circles), for the simulations of the original version of the
model(dashed line), and for the model with aging(solid line). The
main plot is for the actor costarring network and the inset for the
scientific collaboration network.

FIG. 7. Comparison among the average degree of the nearest

neighbors as a function of the degreek̄nnskd for the empirical movie
actor collaboration network(circles), the simulations of the original
version of the model(dashed line), and for the model with aging
(solid line). The main plot is for the actor costarring network and
the inset for the scientific collaboration network.
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the clustering coefficient and, especially, degree–degree cor-
relations of empirical networks. The most important missing
point is probably the aging of individual agents. This issue is
evident in the case of the movie actor network(although it
can be observed for the scientific collaboration network too).
The Internet Movie Database site, from which the actor col-
laboration network was extracted, contains information span-
ning the whole century of the history of cinema, from Louis
Lumiere to the most recent Hollywood productions. Consid-
ering that actors have a finite professional lifetime, it is un-
realistic to allow them to take part in a movie irrespective of
their age.

If we take into account this fact, two main consequences
are immediately expected. On the one side, there should be
an upper cutoff in theQsqd distribution corresponding to the
professional life expectation of actors, as actually it is found
in empirical distributions, and, in addition, not all actors may
work together: only those who are contemporaneous. Obvi-
ously, this phenomenon affects much less the codirectorship
network because of its exponential degree distribution.

To introduce this new ingredient in the model, we must
first assume an aging rate for individual agents. The most
straightforward way to do so is to suppose that the time is
directly equivalent to the experienceq. Actually, in more
realistic situations, it may happen that each agent has its own
aging rhythm. However, the latter version of aging would
make the model more complex. Once time is identified, we
must consider a survival probability distribution for agents.
In parallel with biological systems, we will assume an almost
sure survival until a certain ageQ0 and an exponential decay
hereafter. The modification of the model then requires two
new parameters: the cutoffQ0 and the characteristic time of
the exponential decayt. The rest of the model remains the
same. That is, in each step a new movie is produced,m
actors are new and the rest of themn−m are chosen at ran-
dom with a probability proportional to their experience. In
addition, we assume that the actors become inactive, i.e.,
they cannot be chosen again for new movies, with a prob-
ability given by the complementary of the survival distribu-
tion for their particular ageq.

We carried out simulations with the new version of the
model.Q0 was fixed at 100 for the actors network and at 15
for scientific collaborations to agree with the cutoff observed
in the empirical distributionsQsqd of these networks. The
value of the other parameter,t, is not so easy to establish
from phenomenological data, therefore we check several
characteristic times. For the sake of concreteness, let us fo-
cus on the results obtained witht=50 for actor costarring
and witht=7 for scientific coauthorships, which are realistic
values compatible with the final decay of theQsqd empirical
distributions. Actually, usingt two times bigger we did not
observe essential differences in the properties of the net-
works. Moreover, a simple exponential survival probability
(i.e., with the only parametert) also provides similar ap-
proximate values of the clustering coefficient and the Pear-
son coefficient. However, it does not allow one to satisfac-
tory describe the whole degree distribution. Note that our
choice of the aging parametersQ0 and t does not actually
mean fitting of our final results, which are the clustering and
degree–degree correlation characteristics. Indeed, the values

of Q0 andt were chosen only to properly describe the degree
distribution in the range of large degrees.

In Fig. 6, the local clustering is plotted as a function of the
degree for a network with aging and for the empirical actor
network. The dependencecskd adjusts better to empirical
data, and the computed clustering coefficients are closer to
the empirical ones(see Table I). The improvement on these
coefficients is understandable. As one can see from our
simple analytical estimations, the direct introduction of the
cutoff in the degree distribution seriously improves the val-
ues of the clustering coefficients.

A far more important point is that the aging changes the
type of degree–degree correlations. In the version of the
model with aging, the computed dependence of the mean
degree of the nearest neighbor of a vertex on its degree prop-
erly describes the empirical dependence, as may be seen in
Fig. 7. As a result, the computed values of the Pearson cor-
relation coefficients turns out to be positive(assortative mix-
ing) and close enough to the empirical values(see Table I).
One should note that in the framework of the configuration
model of an uncorrelated bipartite network, this agreement is
impossible. We have checked this claim in the following
way: We have measured the degree–degree correlations in
the one-mode projection resulting from an uncorrelated bi-
partite graph with the same degree distributions for both
types of vertices as generated by our model. In contrast to the

self-organized model, see Fig. 8, the curvek̄nnskd turns out to
be nearly flat, the Pearson coefficient being close to zero.
This signals that the degree–degree correlations are practi-
cally absent in this case.

VII. CONCLUSION

In summary, we have studied a minimal model of evolv-
ing, self-organizing collaboration networks. This model is
not based on a static perspective as was the configuration
model, but on a dynamical mechanism to construct the net-

FIG. 8. Average degree of the nearest neighbors as a function of

the degreek̄nnskd for an uncorrelated bipartite graph with the same
degree distributions for both types of vertices as generated by our
model (solid line). For comparison, the same quantity is displayed
for the empirical actor network(circles).
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work. Besides, its basic constituents are preferential attach-
ment and the bipartite structure of social networks. Our re-
sults show that the self-organized model offers a good
starting point to explain existing empirical data. The model
was compared with empirical results for a number of real
networks, namely a network of scientific coauthorships, a
network of movie actor collaborations, and a network of
company codirectorships.

We have shown that, apart of a generic bipartite structure
and the growth factor, one more element has to be taken into
account in order to explain the empirical observations on the
clustering and degree–degree correlations in collaboration
networks. This key factor is the aging of collaborators. We
demonstrate that in collaboration networks this effect is re-
sponsible for the positive(assortative) degree-degree corre-
lations. We conclude that assortative mixing, which is gen-
erally observed in collaboration networks, is produced by the
combination of their bipartite structure and the aging of the
collaborators.

One should note that, in principle, even uncorrelated bi-
partite graphs(the configuration model) have correlated one-

mode projections. However, the specific degree–degree cor-
relations in these projections are quite weak. In other words,
the configuration model graphs with degree distributions
typical for movie actor nets show neither assortative nor dis-
assortative mixing(they haver <0). In contrast, our self-
organized model provides correlated bipartite graphs, which,
under natural assumptions, have one-mode projections with
realistic structure and realistic correlations.
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